FUNCTIONS TEST - 3° ESO

Exercise 1: (3.25 ptos)

a) Find the **general** equation of the straight line that goes through the points A(-2,5) and B(3,7)

$$2x-5y+29=0$$

b) Given the straight line 4x-3y+9=0 find the values of the slope and the y-intercept

$$\begin{cases}
 m = 4/3 \\
 n = 3
\end{cases}$$

c) Find a straight line that's parallel to 3x - 5y - 10 = 0 and goes through the point P(-3, 4)

$$3x - 5y + 29 = 0$$

d) Find the equation of the straight line with a slope m=-5 that goes through the point Q(1,-4)

$$y = -5x + 1$$

Exercise 2: (1.25 ptos) Plot the graph of the parabola $f(x) = 2x - x^2$, studying the points where it crosses the axes, the coordinates of the vertex and finding as many more points as necessary

Exercise 3: (1.5 ptos) Find the domain of the following functions:

a)
$$f(x) = \frac{\sqrt[3]{x-1}}{x^2 - 5x + 6} \rightarrow \text{Dom } f = \mathbb{R} - \{2, 3\}$$

b)
$$f(x) = \frac{x^2 - 4}{\sqrt{x - 9}} \to \text{Dom } f = (9, +\infty)$$

c)
$$f(x) = \sqrt[4]{x+1} \to \text{Dom } f = [-1, +\infty)$$

Exercise 4: (2 ptos) Plot the graph of the piecewise function:

$$f(x) = \begin{cases} 1 - x & -5 < x \le 1 \\ x^2 - 4x + 3 & 1 < x < 5 \\ 3 & x \ge 5 \end{cases}$$

$$x \ge 5$$

Exercise 5: (2 ptos) Given the graph of a certain function:

a) Indicate its domain and its image

Dom
$$f = (-\infty, 1] \cup [2, 8)$$
 Im $f = (-\infty, 6]$

$$\operatorname{Im} f = (-\infty, 6]$$

b) Indicate the points where the function crosses the axes

$$OX \mid x = -6.8, \quad x = -2.2, \quad x = 0, \quad x = 6.5$$
 $OY \mid y = 0$

$$OY y = 0$$

c) Study its monotony Increases: $(-\infty, -5) \cup (-1, 1)$

Decreases: $(-5,-1) \cup (2,8)$

d) Study the extrema

Relative maxima: x = -5, x = 1, x = 2 Absolute maximum: x = 2

Relative minima: x = -1

Absolute minimum: ∄

