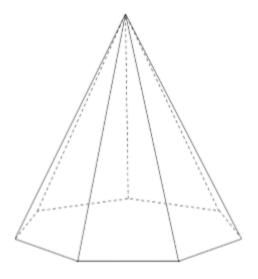

GEOMETRY TEST - 4° ESO

Exercise 1: (1.25 points) Find the value of the unknowns:


$$x = 9.71$$

 $y = 7.29$
 $z = 5.76$
 $a = 5.71$
 $b = 14.12$

Exercise 2: (1 point) Find the values of the indeterminates in the following figure without using Pythagoras' theorem

$$m = 24.5$$

 $a = 32.5$
 $b = 16.12$
 $c = 28.22$

Exercise 3: (1.25 points) Find the area of a heptagonal pyramid with altitude of length $12\,$ cm if the side of the base measures $14\,$ cm and the edge has a length of $16\,$ cm

$$A_{LAT} = 704.98 \text{ cm}^2$$

 $A_B = 388.26 \text{ cm}^2$
 $A_P = 1093.24 \text{ cm}^2$

Exercise 4: (1 point)

$$05^{\circ} = \frac{7\pi}{12}$$
 $300^{\circ} = \frac{5\pi}{12}$

b) Turn into degrees
$$\frac{2\pi}{3}$$
 and $\frac{5\pi}{4}$ $\frac{2\pi}{3} = 120^{\circ}$

$$\frac{2\pi}{3} = 120^{\circ}$$
 $\frac{5\pi}{4} = 2$

Exercise 5: (1 point) Given the vectors $\vec{u} = (-3,7)$, $\vec{v} = (2,-1)$ and $\vec{w} = (-21,38)$

a) Find the length of the vector
$$\vec{u}$$

b) Express
$$\vec{w}$$
 as a linear combination of \vec{u} and \vec{v} $\vec{w} = 5\vec{u} - 3\vec{v}$

c) Are
$$\vec{u}$$
 and \vec{v} perpendicular vectors? $\vec{u} \cdot \vec{v} = -13 \neq 0 \rightarrow$

Exercise 6: (1 point)

a) If
$$\vec{u}=(2,-3)$$
 and $\vec{v}=(4,1)$ find a third vector \vec{w} so that $\vec{w}\cdot\vec{v}=2$ and $\vec{w}\perp\vec{u}$

$$\overrightarrow{w} = \left(\frac{3}{7}, \frac{2}{7}\right)$$

b) Indicate a direction vector and a point of the straight line 7x + 2y - 9 = 0

$$P(1,1)$$
 $u = (2,-7)$

Exercise 7: (1 point) Given the straight line $r = \frac{x-2}{3} = \frac{y+7}{2}$

a) Find the general equation of a parallel line r' that goes through the point P(1,-4)

$$2x-3y-14=0$$

b) Find the general equation a perpendicular line r'' that goes through the point Q(5,-2)

$$3x + 2y - 11 = 0$$

Exercise 8: (1.25 points)

a) Work out the coordinates of the symmetric point of A(-3,7) with respect to Q(-1,-2)

b) Find the parametric and continuous equations of the straight line 2x - 5y + 10 = 0

$$\frac{x}{5} = \frac{y-2}{2} \rightarrow \begin{cases} x = 5t \\ y = 2 + 2t \end{cases}$$

Exercise 9: (1.25 points) Find the value of k so that the triangle A(k+2,5), B(6,4) and C(2k+1,6) is isosceles k=2