BLOQUE OBLIGATORIO:

EJERCICIO 1. (2.5 puntos)

Juan ha gastado 80€ por la compra de un jersey, una camisa y un pantalón. Sabemos que el precio del jersey es un tercio del precio de la camisa y el pantalón juntos.

- a) [1.25 puntos] ¿Es posible determinar de forma única el precio del jersey? ¿Y de la camisa? Razona la respuesta.
- b) **[1.25 puntos]** Si Juan se hubiera esperado a las rebajas se habría gastado $57 \in$, pues el jersey, la camisa y el pantalón tenían un descuento del 30%, del 40% y del 20% respectivamente. Calcula el precio de cada prenda antes de las rebajas.

b)
$$x = 20 \\ y + z = 60 \\ 0.7x + 0.6y + 0.8z = 57$$
 $x = 20 \\ y + z = 60 \\ 0.7x + 6y + 8z = 570$ $x = 20 \\ y + z = 60 \\ 6y + 8z = 430$
$$y = 60 - z \rightarrow 360 - 6z + 8z = 430 \rightarrow 2z = 70 \rightarrow z = 35 \rightarrow y = 25$$
 El jersey cuesta 20 €, la camisa 25 € y el pantalón 35 €

BLOQUE 1:

EJERCICIO 2. (2.5 puntos)

Sabiendo que $\lim_{x\to 0} \frac{\sin x - ax + 2 - 2\cos x}{e^x - x\cos x - 1}$ es finito, calcula a y el valor del límite

$$\lim_{x \to 0} \frac{\sin x - ax + 2 - 2\cos x}{e^x - x\cos x - 1} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = L'H = \lim_{x \to 0} \frac{\cos x - a + 2\sin x}{e^x - \cos x + x\sin x} = \frac{1 - a}{0} = \frac{0}{0} = \frac{1}{0} =$$

para que dicho límite sea finito debe ser de la forma $\frac{0}{0} \rightarrow 1 - a = 0 \rightarrow a = 1$

$$= \lim_{x \to 0} \frac{-\sin x + 2\cos x}{e^x + \sin x + \sin x + x\cos x} = \frac{2}{1} = 2$$

El límite es finito cuando a = 1 y en ese caso vale 2

BLOQUE 1:

EJERCICIO 3. (2.5 puntos)

Sea la función $f:(0,+\infty) \to \mathbb{R}$ definida por $f(x) = a + \frac{\ln x}{x^2}$

- a) [1 punto] Calcula α para que y=1 sea una asíntota horizontal de la gráfica de f.
- b) **[1.5 puntos]** Para a = 0, calcula los intervalos de crecimiento y de decrecimiento de f. Estudia y halla los extremos relativos de f (abscisas donde se obtienen y valores donde se alcanzan).

a)
$$f:(0,+\infty) \to \mathbb{R} \qquad f(x) = a + \frac{\ln x}{x^2}$$

$$y = 1 \to \lim_{x \to +\infty} \left(a + \frac{\ln x}{x^2} \right) = 1 \to a = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^2} = \frac{\infty}{\infty} = L'H = \lim_{x \to +\infty} \frac{1/x}{2x} = \lim_{x \to +\infty} \frac{1}{2x^2} = 0$$

b)
$$f(x) = \frac{\ln x}{x^2} \qquad \text{Dom } f = (0, +\infty)$$

$$f'(x) = \frac{\frac{x^2}{x} - 2x \cdot \ln x}{x^4} = \frac{x - 2x \ln x}{x^4} = \frac{x(1 - 2\ln x)}{x^4} = \frac{1 - 2\ln x}{x^3} = 0 \quad \Rightarrow \quad 2\ln x = 1$$

$$\ln x = \frac{1}{2} \quad \Rightarrow \quad x = e^{1/2} = \sqrt{e} \quad \text{punto crítico}$$

$$x \in (0, \sqrt{e}) \quad \Rightarrow \quad f'(x) > 0 \quad \Rightarrow \quad f \quad \text{crece}$$

$$x \in (\sqrt{e}, +\infty) \quad \Rightarrow \quad f'(x) < 0 \quad \Rightarrow \quad f \quad \text{decrece}$$

$$f(\sqrt{e}) = f(e^{1/2}) = \frac{\ln e^{1/2}}{e} = \frac{1/2}{e} = \frac{1}{2e} \quad \Rightarrow \quad (\sqrt{e}, \frac{1}{2e})$$

BLOQUE 2:

EJERCICIO 4. (2.5 puntos)

Sean los puntos O(0,0,0), A(0,2,-2), B(1,2,m) y C(2,3,2)

- a) **[1.25 puntos]** Halla los valores de m para que el tetraedro determinado por los puntos O, A, B y C tenga un volumen de 3 unidades cúbicas.
- b) [1.25 puntos] Para m=0, calcula la distancia del punto O al plano que pasa por los puntos A, B y C

a)
$$O(0,0,0) A(0,2,-2) B(1,2,m) C(2,3,2)$$

$$V_T = \frac{1}{6} \left[\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC} \right] = \frac{4m-2}{6} = 3 4m-2 = 18 4m = 20 m = 5$$

$$\begin{vmatrix} 0 & 2 & -2 \\ 1 & 2 & m \\ 2 & 3 & 2 \end{vmatrix} = 4m-6+8-4=4m-2$$

b)
$$A(0,2,-2) \qquad B(1,2,0) \qquad C(2,3,2) \qquad d(0,ABC)$$

$$\overrightarrow{AB} = (1,0,2) \qquad \overrightarrow{AC} = (2,1,4)$$

$$\overrightarrow{n} = \begin{vmatrix} i & j & k \\ 1 & 0 & 2 \\ 2 & 1 & 4 \end{vmatrix} = 4j + k - 2i - 4j = -2i + k \quad \Rightarrow \quad \overrightarrow{n} = (2,0,-1)$$

$$2x - z + D = 0 \quad \Rightarrow \quad B \in \pi \quad \Rightarrow \quad 2 + D = 0 \quad \Rightarrow \quad D = -2 \quad \Rightarrow \quad \pi \equiv 2x - z - 2 = 0$$

$$d(0,\pi) = \frac{|-2|}{\sqrt{5}} = \frac{2}{\sqrt{5}} = 0.89 \text{ u}$$

BLOQUE 2:

EJERCICIO 5. (2.5 puntos)

Considera el punto P(1,1,1) y la recta $r = \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{2}$

- a) [1 punto] Halla el plano que pasa por el punto P y contiene a la recta r.
- b) [1.5 puntos] Halla la recta que pasa por el punto P y corta perpendicularmente a la recta r.

a)
$$P(1,1,1) r = \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{2}$$

$$r = \begin{cases} A(1,2,3) & \overrightarrow{PA} = (0,1,2) \\ \overrightarrow{u} = (1,2,2) & \overrightarrow{PA} = (0,1,2) \end{cases}$$

$$\overrightarrow{n} = \begin{vmatrix} i & j & k \\ 1 & 2 & 2 \\ 0 & 1 & 2 \end{vmatrix} = 4i + k - 2i - 2j = 2i - 2j + k \rightarrow \overrightarrow{n} = (2,-2,1)$$

$$\pi = 2x - 2y + z + D = 0 \rightarrow P \in \pi \rightarrow 2 - 2 + 1 + D = 0 \rightarrow D = -1 \rightarrow \pi = 2x - 2y + z - 1 = 0$$

b)
$$P(1,1,1) \qquad r = \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{2}$$

$$\pi \perp r, \ P \in \pi \rightarrow \vec{n} \parallel \vec{u} \rightarrow \vec{n} = (1,2,2)$$

$$\pi = x + 2y + 2z + D = 0 \rightarrow 1 + 2 + 2 + D = 0 \rightarrow D = -5 \rightarrow \pi = x + 2y + 2z - 5 = 0$$

$$r \cap \pi$$

$$r = \begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 + 2t \end{cases} \rightarrow 1 + t + 4 + 4t + 6 + 4t - 5 = 0 \rightarrow 9t = -6 \rightarrow t = \frac{-2}{3}$$

$$Q\left(\frac{1}{3}, \frac{2}{3}, \frac{5}{3}\right) \rightarrow \vec{v} = \vec{QP} = \left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right) \parallel (2, 1, -2) \rightarrow s = \frac{x-1}{2} = y - 1 = \frac{z-1}{-2}$$

BLOQUE 3:

EJERCICIO 6. (2.5 puntos)

Halla la función $f:(0,+\infty)\to\mathbb{R}$ que pasa por los puntos $(2,e-2-2\ln 2)$ y (1,0) y verifica que $f''(x)=e^{x-1}-\frac{1}{x}$

$$f''(x) = e^{x-1} - \frac{1}{x} \rightarrow f'(x) = \int \left(e^{x-1} - \frac{1}{x}\right) dx = e^{x-1} - \ln x + a$$

$$f(x) = \int (e^{x-1} - \ln x + a) dx = e^{x-1} - x \ln x + x + ax + b$$

$$\int \ln x dx = \begin{cases} u = \ln x & \to & du = \frac{dx}{x} \\ v = x & \to & dv = dx \end{cases} = x \ln x - \int dx = x \ln x - x$$

$$f(1) = 0 \rightarrow 1 + 1 + a + b = 0 \rightarrow a + b = -2$$

$$f(2) = e - 2 - 2 \ln 2 \rightarrow e - 2 + 1 + 2 + 2a + b = e - 2 - 2 \ln 2 \rightarrow 2a + b = -4$$

$$\begin{vmatrix}
a+b=-2 \\
2a+b=-4
\end{vmatrix} \rightarrow a=-2 \rightarrow b=0$$

$$f(x) = e^{x-1} - x \ln x - x$$

BLOQUE 3:

EJERCICIO 7. (2.5 puntos)

En la tabla siguiente se recoge el número de coches y motos que se presentaron a la ITV en el año 2023:

	Coches	Motos
Aptos	116383	160667
No aptos	2679	3447

Se elige un vehículo al azar de entre los coches y motos que se presentaron a dicha inspección.

- a) [1.25 puntos] ¿Cuál es la probabilidad de que el vehículo elegido sea una moto o haya resultado apto?
- b) [1.25 puntos] Si el vehículo elegido es un coche, ¿cuál es la probabilidad de que haya resultado no apto?

	Coches	Motos	Total
Aptos	116383	160667	277050
No aptos	2679	3447	6126
Total	119062	164114	283176

a)

-) 1ª forma

$$P(M \cup A) = P(M) + P(A) - P(A \cap M) = \frac{164114}{283176} + \frac{277050}{283176} - \frac{160667}{283176} = \frac{280497}{283176} = 0.9905$$

-) 2ª forma

$$P(\overline{M} \cap \overline{A}) = P(\overline{M} \cup \overline{A}) = 1 - P(M \cup A) \rightarrow P(M \cup A) = 1 - P(\overline{M} \cap \overline{A}) = 1 - \frac{2679}{283176} = 0.9905$$

b)

$$P(\overline{A}/C) = \frac{P(C \cap \overline{A})}{P(C)} = \frac{2679/283176}{119062/283176} = \frac{2679}{119062} = 0.0225$$